Activation of the NRF2 antioxidant program generates an imbalance in central carbon metabolism in cancer
نویسندگان
چکیده
During tumorigenesis, the high metabolic demand of cancer cells results in increased production of reactive oxygen species. To maintain oxidative homeostasis, tumor cells increase their antioxidant production through hyperactivation of the NRF2 pathway, which promotes tumor cell growth. Despite the extensive characterization of NRF2-driven metabolic rewiring, little is known about the metabolic liabilities generated by this reprogramming. Here, we show that activation of NRF2, in either mouse or human cancer cells, leads to increased dependency on exogenous glutamine through increased consumption of glutamate for glutathione synthesis and glutamate secretion by xc- antiporter system. Together, this limits glutamate availability for the tricarboxylic acid cycle and other biosynthetic reactions creating a metabolic bottleneck. Cancers with genetic or pharmacological activation of the NRF2 antioxidant pathway have a metabolic imbalance between supporting increased antioxidant capacity over central carbon metabolism, which can be therapeutically exploited.
منابع مشابه
Diabetic Cardiomyopathy and Its Prevention by Nrf2: Current Status
Diabetic cardiomyopathy (DCM), as one of the major cardiac complications in diabetic patients, is known to related with oxidative stress that is due to a severe imbalance between reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) generation and their clearance by antioxidant defense systems. Transcription factor nuclear factor NF-E2-related factor 2 (Nrf2) plays an important r...
متن کاملSquid ink polysaccharide reduces cyclophosphamide-induced testicular damage via Nrf2/ARE activation pathway in mice
Objective(s):Cyclophosphamide (CP) toxicity on testis was hampered by squid ink polysaccharide (SIP) via restoration of antioxidant ability in our previous investigations. This study investigated roles of Nrf2/ARE signal pathway in testis of treated mice. Materials and Methods: Male Kunming mice were employed to undergo treatment with SIP and/or CP. Protein levels of Nrf2, keap-1, histone deac...
متن کاملNrf2 is the key to chemotherapy resistance in MCF7 breast cancer cells under hypoxia
Hypoxia leads to reactive oxygen species (ROS) imbalance, which is proposed to associate with drug resistance and oncogenesis. Inhibition of enzymes of antioxidant balancing system in tumor cells was shown to reduce chemoresistance under hypoxia. However, the underlying mechanism remains unknown. The key regulator of antioxidant balancing system is nuclear factor erythroid 2-related factor 2 (N...
متن کاملThe Keap1–Nrf2 system in cancers: stress response and anabolic metabolism
The Keap1-Nrf2 [Kelch-like ECH-associated protein 1-nuclear factor (erythroid-derived 2)-like 2] pathway plays a central role in the protection of cells against oxidative and xenobiotic stresses. Nrf2 is a potent transcription activator that recognizes a unique DNA sequence known as the antioxidant response element (ARE). Under normal conditions, Nrf2 binds to Keap1 in the cytoplasm, resulting ...
متن کاملPolymorphisms of Antioxidant’ Genes as a Target for Diabetes Management
Diabetes mellitus (DM) is one of the most important health problems with increasing prevalence worldwide. Oxidative stress that is a result of imbalance between reactive oxygen species (ROS) generation and antioxidant defense mechanisms has been demonstrated as a main pathology in DM. Hyperglycemia-induced ROS productions can induce oxidative stress through four major molecular mechanisms inclu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2017